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A proof is given to show that satisfying the boundary conditions on the tangential electric and mag-
netic fields across the boundary surface of two different material media means that the boundary condi-
tions on the normal magnetic-induction vector and electric-displacement vector are automatically

satisfied while the converse is not true.

PACS number(s): 41.20.—q

Boundary conditions for electromagnetic fields are the
cornerstones for classical theory of electrodynamics.
Their derivations are standard textbook material [1-5].
For example, the boundary conditions for electromagnet-
ic fields at the boundary of two distinct dielectric media,
derived through the application of Stoke’s theorem to
Maxwell’s curl equations over a rectangular area which
borders the two boundary media, are

nXE;,=nXE,, (1)
nXH,=nXH, , ()

where n is a unit vector normal to the boundary, E; and
E, are, respectively, the electric field in medium 1 and in
medium 2 at the boundary, and H; and H, are, respec-
tively, the magnetic field in medium 1 and in medium 2 at
the boundary; the boundary conditions derived through
the application of divergence theorem to Maxwell’s diver-
gence equations over a pill box which borders the two
boundary media, are

n'Dlzn'D2 N (3)
n-B,=n'B,, 4)

where D, and D, are, respectively, the displacement vec-
tor in medium 1 and in medium 2 at the boundary, while
B, and B, are, respectively, the magnetic flux density in
medium 1 and in medium 2 at the boundary.

It is important to note that the boundary conditions on
the normal components of D and B [Egs. (3) and (4)] are
redundant, since, according to the uniqueness theorem
[1], the boundary conditions on the tangential com-
ponents of E and H [Egs. (1) and (2)] are necessary and
sufficient boundary conditions. In other words, satisfying
Egs. (1) and (2) implies that Egs. (3) and (4) are automati-
cally satisfied while the converse is not true. Although
this fact is well known, no proof has been found in the
standard literature. It is the purpose of this paper to
present this proof.

Across the boundary, as shown in Fig. 1, let us intro-
duce two small parallel surface areas of rectangular shape
that are mirror images of each other. The top rectangle,
parallel to the interface, is located in medium 1, charac-
terized by (€;,u,,0,) where €, u;, and o, are, respective-
ly, the permittivity, the permeability, and the conductivi-
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ty of medium 1, while the bottom rectangle, also parallel
to the interface, is located in medium 2, characterized by
(€5,149,0,) where €,,14,, and o, are, respectively, the per-
mittivity, the permeability, and the conductivity of medi-
um 2. The small rectangle has sides As; and As,. The
unit vectors n; and n, are normal to the rectangular sur-
faces as shown in Fig. 1. The vectors e,, €,, and e, are
the three unit vectors in the x,y,z directions, respectively.
The source-free Maxwells equations are

V><E=———aB, (5)
ot
oD

X i

VXH 3 (6)

where E, H, B, D refer to the field quantities in the medi-
um in which they apply. Integrating Eq. (5) over the rec-
tangular area AS, in region 1 yields

—__39 )
fAsl(VXEl)-n,dS— oy fAslB1 nds , (7

and integrating Eq. (5) over the rectangular area AS, in
region 2 yields

I
fASZ(VXEz)-nZdS——EIASZBz-nZdS . 8)

€/ %

FIG. 1. Geometry of the problem. Rectangular area AS is
parallel to rectangular area AS,. Sides of rectangle are As; and
As,. Alis the separation between the two rectangles.
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Application of Stoke’s theorem to Egs. (7) and (8) and
adding the resultant equations yield

fCIEl-dsl-F fczEz-dsz

3
=— [IASIB,-nldS-G- fAssz-nzdS] , O

where ¢, and c, are, respectively, the circumferences of
the rectangular areas AS, and AS,. In rectangular coor-
dinates, with As, —0 and As, —0, E has a constant value
along each side. Allowing the separation Al between the
two parallel rectangular areas in medium 1 and in medi-
um 2 to approach zero, one has

(Eyy —Eq 2% +(E, — E,, 28y
=—%(BIZ—BZZ)AxAy . (10)

From Fig. 1, one may immediately identify the follow-
ing:

As,=Ax, As,=Ay,
s;=e,, §,~e,,
n,=—n,=n=e, .

The quantities E,, and E,, are, respectively, the x-
directed electric field tangential to the boundary in region

1 and in region 2, the quantities E,, and E,, are, respec-
tively, the y-directed electric field tangential to the
boundary in region 1 and in region 2, and the quantities
B,, and B,, are, respectively, the z-directed B field nor-
mal to the boundary surface in region 1 and in region 2.

Equation (10) shows that if the condition that the
tangential components of the electric field are continuous
across the boundary is satisfied, i.e., E,,=E, and
E,,=E,,, then it follows that B,,=B,,, i.e., the condi-
tion that the normal component of the B field is continu-
ous across the boundary is automatically satisfied. But, if
the condition that the normal component of B field is
continuous across the boundary is satisfied, i.e.,
B,,=B,,, according to Eq. (10) the two boundary condi-
tions (E,,=E,,, E;,=E,,) on the two components of
the tangential electric field are not necessarily satisfied.

A similar proof can be made for the tangential com-
ponents of H and the normal component of D, using Eq.
(6).

It is therefore proven that satisfying the boundary con-
ditions on the tangential electric and magnetic fields
across the boundary surface implies that the boundary
conditions on the normal magnetic induction vector and
the normal electric displacement vector are satisfied
while the converse is not true.
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